Pael receptor induces death of dopaminergic neurons in the substantia nigra via endoplasmic reticulum stress and dopamine toxicity, which is enhanced under condition of parkin inactivation.
نویسندگان
چکیده
Selective loss of dopaminergic neurons is the final common pathway in Parkinson's disease. Expression of Parkin associated endothelin-receptor like receptor (Pael-R) in mouse brain was achieved by injecting adenoviral vectors carrying a modified neuron-specific promoter and Cre recombinase into the striatum. Upregulation of Pael-R in the substantia nigra pars compacta of mice by retrograde infection induced endoplasmic reticulum (ER) stress leads to death of dopaminergic neurons. The role of ER stress in dopaminergic neuronal vulnerability was highlighted by their decreased survival in mice deficient in the ubiquitin-protein ligase Parkin and the ER chaperone ORP150 (150 kDa oxygen-regulated protein). Dopamine-related toxicity was also a key factor, as a dopamine synthesis inhibitor blocked neuronal death in parkin null mice. These data suggest a model in which ER- and dopamine-related stress are major contributors to decreased viability of dopaminergic neurons in a setting relevant to Parkinson's disease.
منابع مشابه
A ubiquitin ligase HRD1 promotes the degradation of Pael receptor, a substrate of Parkin.
It has been proposed that in autosomal recessive juvenile parkinsonism (AR-JP), a ubiquitin ligase (E3) Parkin, which is involved in endoplasmic reticulum-associated degradation (ERAD), lacks E3 activity. The resulting accumulation of Parkin-associated endothelin receptor-like receptor (Pael-R), a substrate of Parkin, leads to endoplasmic reticulum stress, causing neuronal death. We previously ...
متن کاملCHIP is associated with Parkin, a gene responsible for familial Parkinson's disease, and enhances its ubiquitin ligase activity.
Unfolded Pael receptor (Pael-R) is a substrate of the E3 ubiquitin ligase Parkin. Accumulation of Pael-R in the endoplasmic reticulum (ER) of dopaminergic neurons induces ER stress leading to neurodegeneration. Here, we show that CHIP, Hsp70, Parkin, and Pael-R formed a complex in vitro and in vivo. The amount of CHIP in the complex was increased during ER stress. CHIP promoted the dissociation...
متن کاملCinnamaldehyde attenuates dopaminergic neuronal loss in substantia nigra and induces midbrain catalase activity in a mouse model of Parkinson’s disease
Background and Objective: Parkinson's disease (PD) is the second most common neurodegenerative disease after Alzheimer's disease that affects 3% of the population. PD involves a progressive degeneration of dopaminergic neurons in the substantia nigra pars compacta (SNc) and subsequent loss of dopamine. Dopamine depletion leads to movement dysfunction and is accompanied with tremor, rigid muscle...
متن کاملATF4 protects against neuronal death in cellular Parkinson's disease models by maintaining levels of parkin.
Parkinson's disease (PD) is a common neurodegenerative disorder, for which there are no effective disease-modifying therapies. The transcription factor ATF4 (activating transcription factor 4) is induced by multiple PD-relevant stressors, such as endoplasmic reticulum stress and oxidative damage. ATF4 may exert either protective or deleterious effects on cell survival, depending on the paradigm...
متن کاملAn Unfolded Putative Transmembrane Polypeptide, which Can Lead to Endoplasmic Reticulum Stress, Is a Substrate of Parkin
A putative G protein-coupled transmembrane polypeptide, named Pael receptor, was identified as an interacting protein with Parkin, a gene product responsible for autosomal recessive juvenile Parkinsonism (AR-JP). When overexpressed in cells, this receptor tends to become unfolded, insoluble, and ubiquitinated in vivo. The insoluble Pael receptor leads to unfolded protein-induced cell death. Par...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- Human molecular genetics
دوره 16 1 شماره
صفحات -
تاریخ انتشار 2007